Trading Off Subtask Dispersion and Response Time in Split-Merge Systems
نویسندگان
چکیده
In many real-world systems incoming tasks split into subtasks which are processed by a set of parallel servers. In such systems two metrics are of potential interest: response time and subtask dispersion. Previous research has been focused on the minimisation of one, but not both, of these metrics. In particular, in our previous work, we showed how the processing of selected subtasks can be delayed in order to minimise expected subtask dispersion and percentiles of subtask dispersion in the context of split-merge systems. However, the introduction of subtask delays obviously impacts adversely on task response time and maximum sustainable system throughput. In the present work, we describe a methodology for managing the trade off between subtask dispersion and task response time. The objective function of the minimisation is based on the product of expected subtask dispersion and expected task response time. Compared with our previous methodology, we show how our new technique can achieve comparable subtask dispersion with substantial improvements in expected task response time.
منابع مشابه
Reducing subtask dispersion in parallel queueing systems
In various real-world parallel processing systems, incoming tasks divide into several subtasks that are processed independently by parallel servers. Queueing networks are a natural way to represent the ow and processing of tasks and subtasks in such systems. Two useful classes of queueing network representations are split-merge and fork-join systems. There are two main metrics of interest in th...
متن کاملReduction of Subtask Dispersion in Fork-Join Systems
Fork-join and split-merge queueing systems are well-known abstractions of parallel systems in which each incoming task splits into subtasks that are processed by a set of parallel servers. A task exits the system when all of its subtasks have completed service. Two key metrics of interest in such systems are task response time and subtask dispersion. This paper presents a technique applicable t...
متن کاملDynamic Subtask Dispersion Reduction in Heterogeneous Parallel Queueing Systems
Fork-join and split-merge queueing systems are mathematical abstractions of parallel task processing systems in which entering tasks are split into N subtasks which are served by a set of heterogeneous servers. The original task is considered completed once all the subtasks associated with it have been serviced. Performance of split-merge and fork-join systems are often quantified with respect ...
متن کاملControlling variability in split-merge systems and its impact on performance
We consider split–merge systems with heterogeneous subtask service times and limited output buffer space in which to hold completed but as yet unmerged subtasks. An important practical problem in such systems is to limit utilisation of the output buffer. This can be achieved by judiciously delaying the processing of subtasks in order to cluster subtask completion times. In this paper we present...
متن کاملControlling Variability in Split-Merge Systems
We consider split-merge systems with heterogeneous subtask service times and limited output buffer space in which to hold completed but as yet unmerged subtasks. An important practical problem in such systems is to limit utilisation of the output buffer. This can be achieved by judiciously delaying the processing of subtasks in order to cluster subtask completion times. In this paper we present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013