Trading Off Subtask Dispersion and Response Time in Split-Merge Systems

نویسندگان

  • Iryna Tsimashenka
  • William J. Knottenbelt
چکیده

In many real-world systems incoming tasks split into subtasks which are processed by a set of parallel servers. In such systems two metrics are of potential interest: response time and subtask dispersion. Previous research has been focused on the minimisation of one, but not both, of these metrics. In particular, in our previous work, we showed how the processing of selected subtasks can be delayed in order to minimise expected subtask dispersion and percentiles of subtask dispersion in the context of split-merge systems. However, the introduction of subtask delays obviously impacts adversely on task response time and maximum sustainable system throughput. In the present work, we describe a methodology for managing the trade off between subtask dispersion and task response time. The objective function of the minimisation is based on the product of expected subtask dispersion and expected task response time. Compared with our previous methodology, we show how our new technique can achieve comparable subtask dispersion with substantial improvements in expected task response time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing subtask dispersion in parallel queueing systems

In various real-world parallel processing systems, incoming tasks divide into several subtasks that are processed independently by parallel servers. Queueing networks are a natural way to represent the ow and processing of tasks and subtasks in such systems. Two useful classes of queueing network representations are split-merge and fork-join systems. There are two main metrics of interest in th...

متن کامل

Reduction of Subtask Dispersion in Fork-Join Systems

Fork-join and split-merge queueing systems are well-known abstractions of parallel systems in which each incoming task splits into subtasks that are processed by a set of parallel servers. A task exits the system when all of its subtasks have completed service. Two key metrics of interest in such systems are task response time and subtask dispersion. This paper presents a technique applicable t...

متن کامل

Dynamic Subtask Dispersion Reduction in Heterogeneous Parallel Queueing Systems

Fork-join and split-merge queueing systems are mathematical abstractions of parallel task processing systems in which entering tasks are split into N subtasks which are served by a set of heterogeneous servers. The original task is considered completed once all the subtasks associated with it have been serviced. Performance of split-merge and fork-join systems are often quantified with respect ...

متن کامل

Controlling variability in split-merge systems and its impact on performance

We consider split–merge systems with heterogeneous subtask service times and limited output buffer space in which to hold completed but as yet unmerged subtasks. An important practical problem in such systems is to limit utilisation of the output buffer. This can be achieved by judiciously delaying the processing of subtasks in order to cluster subtask completion times. In this paper we present...

متن کامل

Controlling Variability in Split-Merge Systems

We consider split-merge systems with heterogeneous subtask service times and limited output buffer space in which to hold completed but as yet unmerged subtasks. An important practical problem in such systems is to limit utilisation of the output buffer. This can be achieved by judiciously delaying the processing of subtasks in order to cluster subtask completion times. In this paper we present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013